Investigating rubble mound breakwaters against solitary waves using DualSPHysics: **The PI-BREAK Project**

Bonaventura TAGLIAFIERRO

PI-BREAK Project

Predictive Intelligent system to optimize BREAKwater maintenance

- PI: Corrado ALTOMARE
- Iván MARTÍNEZ-ESTEVÉZ
- José M. DOMÍNGUEZ
- Alejandro J.C. CRESPO
- Moncho GÓMEZ-GESTEIRA

PI-BREAK Project

Predictive Intelligent system to optimize BREAKwater maintenance

WP3: synthetic data generation

- Multi-scale wave modeling
- Multi-GPU computation

Setup TOD-IHC 1/45 scaled bathymetry

3D reconstructution of the bathymetry from field data. This is the setup that we would consider for our validations.

DualSPHysics

Open source SPH solver

Mono-dispersed SPH implementation Coupling to improve the physics Single phase

Features

- CPU/GPU Implementation (C++/Cuda)
- Highly parallelized for GPU units (only one so far)
- Pre- and Post-processing tools

Open source

Domínguez, J.M., Fourtakas, G., Altomare, C. et al. DualSPHysics: from fluid dynamics to multiphysics problems. Comp. Part. Mech. 9, 867-895 (2022). https://doi.org/10.1007/s40571-021-00404-2

Setup TOD-IHC 1/45 scaled bathymetry

- More than 1000 blocks
- Complex bathymetry
- The blocks move only after long sea-states
- Fully-3D simulation

Wave basin arranged in Santander for this project

Setup TOD-IHC 1/45 scaled bathymetry

3D reconstructution of the bathymetry from field data. We would need the configutation in the TOD

Numerical TOD-UPC Multi-GPU simulation

Fully 3D Example of a solitary wave

Note: *L* is the meaningful size of a block (5.00 m)

Resolution dp=L/10100 M particles Run on 4 GPU (V100)

Getting blocks in

From Project Chrono

Open source multiphysics library

Multi-body support **Smooth and non-smooth contacts Kinematic and dynamic restrictions**

Supports general featured bodies

SBEL Simulation Based Engineering Lab University Of Wisconsin - Madison

https://doi.org/10.1016/j.cpc.2022.108581

Courtesy of Salvatore Capasso

11

From Project Chrono

Multi-body support Smooth and non-smooth contacts

12

Interaction between Tetrapods and Wave Tsunami wave generation and propagation

Mitsui, J., et al. (2023). DualSPHysics modelling to analyse the response of Tetrapods against solitary wave. *Coastal Engineering*, *183*, 104315. <u>https://doi.org/10.1016/j.coastaleng.2023.104315</u>

Interaction between Tetrapods and Wave PVC mound

Interaction between Tetrapods and Wave Tsunami wave generation and propagation

Mitsui, J., et al. (2023). DualSPHysics modelling to analyse the response of Tetrapods against solitary wave. *Coastal Engineering*, *183*, 104315. <u>https://doi.org/10.1016/j.coastaleng.2023.104315</u>

of motion is derived from the first-order shallow water solution (KdV)

TOP VIEW

Mitsui et al. 2023

Total runtime = 37 h

Martínez-Estévez, I. et al. (2023). Coupling of an SPH-based solver with a multiphysics library. Computer Physics Communications, 283, 108581. https://doi.org/10.1016/j.cpc.2022.108581

Total runtime = 12 h

Canelas, R. B. et al. (2016). SPH–DCDEM model for arbitrary geometries in free surface solid-fluid flows. Computer Physics Communications, 202, 131-140. https://doi.org/10.1016/ j.cpc.2016.01.006

The figure charts the path followed by each single block in the two simulations.

Total runtime = 37 h

Martínez-Estévez, I. et al. (2023). Coupling of an SPH-based solver with a multiphysics library. Computer Physics Communications, 283, 108581. https://doi.org/10.1016/j.cpc.2022.108581

Total runtime = 12 h

Canelas, R. B. et al. (2016). SPH–DCDEM model for arbitrary geometries in free surface solid-fluid flows. Computer Physics Communications, 202, 131-140. https://doi.org/10.1016/ j.cpc.2016.01.006

200k fluid particles

Further considerations

Further considerations First comprehensive test

1400 blocks *dp=L/*6 11 Million particles 8 hours to run

Solitary wave impact on a newly formed mound of 1400 blocks

Further considerations Concluding remarks

- Fluid simulation for big coastal area (Multi-GPU)
- Targeting domain reduction doable for short events (Multi-scale)
- Enriching simulations with complex coastal structure comes with many options
- To be seen what works best for blocks (balance of resources)

Investigating rubble mound breakwaters against solitary waves using DualSPHysics: **The PI-BREAK Project**

Bonaventura TAGLIAFIERRO

