A link between information theory and SPH

Daniel Duque ${ }^{1}$, Pablo Eleazar Merino-Alonso ${ }^{2}$, Javier Calderon-Sanchez ${ }^{1}$, Jose Luis Cercos-Pita ${ }^{3}$
${ }^{1}$ CEHINAV - ETSIN, Universidad Politécnica de Madrid
${ }^{2}$ CoreMarine / Universidad Politécnica de Madrid
${ }^{3}$ Surgical Sciences Dep, Uppsala Universitet, Sweden
$3^{\text {rd }}$ Iberian Congress Advances on SPH

canal.etsin.upm.es

Quick SPH

may be derived from a Lagrangian:

$$
L=T+\sum_{i} p_{i} V_{i}
$$

Quick SPH

SPH may be derived from a Lagrangian:

$$
L=T+\sum_{i} p_{i} V_{i}
$$

together with
$>$ some definition of V_{i}

Quick SPH

SPH may be derived from a Lagrangian:

$$
L=T+\sum_{i} p_{i} V_{i}
$$

together with
some definition of V_{i}
> some "closure" to get the pressures p_{i}

Quick SPH 2

In fact, it is easy to show that if

$$
V_{i}=\frac{m_{i}}{\rho_{i}} \quad \rho_{i}=m_{j} \sum_{j} W_{i j},
$$

Quick SPH 2

In fact, it is easy to show that if

$$
\begin{gathered}
V_{i}=\frac{m_{i}}{\rho_{i}} \quad \rho_{i}=m_{j} \sum_{j} W_{i j} \\
f_{i}=-\sum_{j}\left(\frac{m_{j}^{2} p_{j}}{\rho_{j}^{2}}+\frac{m_{i}^{2} p_{i}}{\rho_{i}^{2}}\right) \nabla_{i} W_{i j} .
\end{gathered}
$$

Forget SPH - SFs

All we have is particles.
Particle i influences particle j through a
" $\phi_{i}\left(\boldsymbol{r}_{j}\right)$ ".

Forget SPH - SFs

All we have is particles.
Particle i influences particle j through a shape function (SF),
" $\phi_{i}\left(\boldsymbol{r}_{j}\right)$ ".
Subject to constraints, such as $\sum_{i} \phi_{i}\left(r_{j}\right)=1$.

Information entropy

Too many possibilities! But, information theory's "unbiased inference" (Jaynes, 1957) says we should

$$
S_{j}=-\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) \log \left[\phi_{i}\left(\boldsymbol{r}_{j}\right)\right]
$$

The resulting SFs are very wide. Hence, Arroyo and Ortiz (2006) added an energy to make SFs more local:

$$
E_{j}=\beta \sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) r_{i j}^{2}
$$

The resulting SFs are very wide. Hence, Arroyo and Ortiz (2006) added an energy to make SFs more local:

$$
E_{j}=\beta \sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) r_{i j}^{2}
$$

If we forget constraints, the extreme of $F=E-T S$ gives

$$
\phi_{i}\left(\boldsymbol{r}_{j}\right)=\exp \left(-\beta r_{i j}^{2}\right)
$$

More than enough to drive me(*) nuts at the time (from that time, to be precise.)

Building a theory: ideal part

A continuum theory already exists[1], so we may inspire ourselves.

$$
-S=c^{2} \int \rho(r) \sum_{i} \phi_{i}(r)\left[\log \left(\bar{\rho}(r) \phi_{i}(r)\right)-1\right] d r .
$$

Building a theory: ideal part

A continuum theory already exists[1], so we may inspire ourselves.

$$
-S=c^{2} \int \rho(r) \sum_{i} \phi_{i}(r)\left[\log \left(\bar{\rho}(r) \phi_{i}(r)\right)-1\right] d r .
$$

Any integral may be approximated as

$$
\int f(\boldsymbol{r}) d \boldsymbol{r} \doteq \sum_{j} \frac{m_{j}}{\rho_{j}} f\left(\boldsymbol{r}_{j}\right)
$$

Building a theory: ideal part

A continuum theory already exists[1], so we may inspire ourselves.

$$
-S=c^{2} \int \rho(r) \sum_{i} \phi_{i}(r)\left[\log \left(\bar{\rho}(r) \phi_{i}(\boldsymbol{r})\right)-1\right] d r
$$

Any integral may be approximated as

$$
\int f(\boldsymbol{r}) d \boldsymbol{r} \doteq \sum_{j} \frac{m_{j}}{\rho_{j}} f\left(\boldsymbol{r}_{j}\right)
$$

Therefore,

$$
-S \doteq c^{2} \sum_{j} m_{j} \sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right)\left[\log \left(\frac{\rho_{j} \phi_{i}\left(\boldsymbol{r}_{j}\right)}{m_{j}}\right)-1\right]
$$

Building a theory: energy part, constraint

The energy term is

$$
E=\beta \int \rho(\boldsymbol{r}) \sum_{i} \phi_{i}(\boldsymbol{r})\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|^{2} d \boldsymbol{r}
$$

Building a theory: energy part, constraint

The energy term is

$$
E=\beta \int \rho(\boldsymbol{r}) \sum_{i} \phi_{i}(\boldsymbol{r})\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|^{2} d \boldsymbol{r}
$$

For a Gaussian kernel, $\beta r_{i j}^{2} \propto-\log W_{i j}$, so for any kernel

$$
E \doteq-c^{2} \sum_{j} m_{j} \sum_{i} \phi_{i}\left(r_{j}\right) \log \left(m_{j} W_{i j}\right) .
$$

Building a theory: energy part, constraint

The energy term is

$$
E=\beta \int \rho(\boldsymbol{r}) \sum_{i} \phi_{i}(\boldsymbol{r})\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|^{2} d \boldsymbol{r}
$$

For a Gaussian kernel, $\beta r_{i j}^{2} \propto-\log W_{i j}$, so for any kernel

$$
E \doteq-c^{2} \sum_{j} m_{j} \sum_{i} \phi_{i}\left(r_{j}\right) \log \left(m_{j} W_{i j}\right) .
$$

Also, a C0 constraint,

$$
L_{\mathrm{C} 0}=\sum_{j} m_{j} \alpha_{j}\left(\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right)-1\right)
$$

Density, revealed

Before including the pressure: extremezing $F=E-S$ with respect to $\phi_{i}\left(\boldsymbol{r}_{j}\right)$ and α_{j},

$$
\begin{gathered}
F^{\prime \prime}=-c^{2} \sum_{j} m_{j}\left[\log \left(\frac{m_{j} Z_{j}}{\rho_{j}}\right)+1\right] \\
Z_{i}:=\sum_{j} W_{i j}
\end{gathered}
$$

Density, revealed

Before including the pressure: extremezing $F=E-S$ with respect to $\phi_{i}\left(\boldsymbol{r}_{j}\right)$ and α_{j},

$$
\begin{gathered}
F^{\prime \prime}=-c^{2} \sum_{j} m_{j}\left[\log \left(\frac{m_{j} Z_{j}}{\rho_{j}}\right)+1\right] \\
Z_{i}:=\sum_{j} W_{i j}
\end{gathered}
$$

But, pressure is not included, and we do not want anything happening yet! This fixes the density:

$$
\rho_{j}:=m_{j} \sum_{i} W_{i j}
$$

Building a theory: pressure

Finally, there will be a pressure term

$$
E_{p}=-\sum_{i} p_{i}\left(\int \phi_{i}(r) d r-V_{i}^{0}\right)
$$

Building a theory: pressure

Finally, there will be a pressure term

$$
\begin{aligned}
E_{p} & =-\sum_{i} p_{i}\left(\int \phi_{i}(r) d r-V_{i}^{0}\right) \\
V_{i} & =\int \phi_{i}(r) d r \doteq \sum_{j} \frac{m_{j}}{\rho_{j}} \phi_{i}\left(r_{j}\right) .
\end{aligned}
$$

The C0 model: shape functions

$$
\phi_{i}\left(r_{j}\right)=\frac{W_{i j} z_{i, j}}{Z_{j}}, \quad z_{i, j}:=\exp \left(\frac{p_{i}}{\rho_{j} c^{2}}\right)
$$

The C0 model: shape functions

$$
\begin{gathered}
\phi_{i}\left(r_{j}\right)=\frac{W_{i j} z_{i, j}}{Z_{j}}, \quad z_{i, j}:=\exp \left(\frac{p_{i}}{\rho_{j} c^{2}}\right) \\
Z_{i}:=\sum_{j} W_{i j} z_{j, i}
\end{gathered}
$$

The C0 model: forces

$$
f_{i}^{(1)}=-c^{2} \sum_{j}\left(\frac{m_{j}^{2}}{\rho_{j}}+\frac{m_{i}^{2}}{\rho_{i}}\right) \nabla_{i} W_{i j}
$$

The C0 model: forces

$$
\begin{gathered}
f_{i}^{(1)}=-c^{2} \sum_{j}\left(\frac{m_{j}^{2}}{\rho_{j}}+\frac{m_{i}^{2}}{\rho_{i}}\right) \nabla_{i} W_{i j} \\
f_{i}^{(2)}=c^{2} \sum_{j}\left(\frac{m_{j} z_{i, j}}{Z_{j}}+\frac{m_{i} z_{j, i}}{Z_{i}}\right) \nabla_{i} W_{i j}
\end{gathered}
$$

The C0 model: forces

$$
\begin{gathered}
f_{i}^{(1)}=-c^{2} \sum_{j}\left(\frac{m_{j}^{2}}{\rho_{j}}+\frac{m_{i}^{2}}{\rho_{i}}\right) \nabla_{i} W_{i j} \\
f_{i}^{(2)}=c^{2} \sum_{j}\left(\frac{m_{j} z_{i, j}}{Z_{j}}+\frac{m_{i} z_{j, i}}{Z_{i}}\right) \nabla_{i} W_{i j} \\
f_{i}^{(3)}=-\sum_{j}\left(\frac{m_{j}^{2} \bar{p}_{j}}{\rho_{j}^{2}}+\frac{m_{i}^{2} \bar{p}_{i}}{\rho_{i}^{2}}\right) \nabla_{i} W_{i j}, \quad \bar{p}_{i}:=\sum_{j} \phi_{j}\left(r_{i}\right) p_{j} .
\end{gathered}
$$

The C0 model: pressure closure

Since the volumes explicitely depend on the pressures, $V_{i}=\sum_{j} \frac{m_{j}}{\rho_{j}} \phi_{i}\left(\boldsymbol{r}_{j}\right)$, we may look for the pressure field that fixes their values, through a Newton-Raphson method:

$$
\sum_{j}\left(\frac{\partial V_{i}}{\partial p_{j}}\right)^{(n)}\left[p_{j}^{(n+1)}-p_{j}^{(n)}\right]=-\left(V_{i}-V_{i}^{0}\right)^{(n)}
$$

The C0 model: pressure closure

Since the volumes explicitely depend on the pressures, $V_{i}=\sum_{j} \frac{m_{j}}{\rho_{j}} \phi_{i}\left(\boldsymbol{r}_{j}\right)$, we may look for the pressure field that fixes their values, through a Newton-Raphson method:

$$
\sum_{j}\left(\frac{\partial V_{i}}{\partial p_{j}}\right)^{(n)}\left[p_{j}^{(n+1)}-p_{j}^{(n)}\right]=-\left(V_{i}-V_{i}^{0}\right)^{(n)}
$$

this is a Poisson equation to solve for the pressures.

Future: C1 shape functions

$$
L_{\mathrm{Cl}}=\sum_{j} m_{j} \boldsymbol{\lambda}_{j} \cdot\left(\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) \boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)
$$

Future: C1 shape functions

$$
L_{\mathrm{C} 1}=\sum_{j} m_{j} \boldsymbol{\lambda}_{j} \cdot\left(\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) \boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)
$$

SFs are now C1 consistent, there is a new force term, but most importantly, perhaps ...

C1 shape functions

The SFs have a sort of boundary detection, and have a "weak-Kronecker condition".

Thanks, and Ref.

Thanks for your attention.
[1] Daniel Duque, A unified derivation of Voronoi, power, and finite-element Lagrangian computational fluid dynamics, European Journal of Mechanics - B/Fluids 98, 268-278 (2023)

Extra: SFs as interpolants

Consider the smoothing

$$
\bar{f}\left(r_{j}\right)=\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) f_{i}
$$

Extra: SFs as interpolants

Consider the smoothing

$$
\bar{f}\left(\boldsymbol{r}_{j}\right)=\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) f_{i}
$$

Then C0, $\sum_{i} \phi_{i}\left(r_{j}\right)=1$, means constant fields have proper constant smoothing.

Extra: SFs as interpolants

Consider the smoothing

$$
\bar{f}\left(\boldsymbol{r}_{j}\right)=\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) f_{i}
$$

Then C0, $\sum_{i} \phi_{i}\left(r_{j}\right)=1$, means constant fields have proper constant smoothing. While C1, $\sum_{i} \phi_{i}\left(\boldsymbol{r}_{j}\right) \boldsymbol{r}_{i}=\boldsymbol{r}_{j}$ means linear fields have proper linear smoothing.

