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All we have is particles.
Particle 7 influences particle j through a

“Pi(rj)”.




All we have is particles.

Particle 7 influences particle j through a
“Pi(r;)”.

Subject to constraints, such as ), ¢;(r;) = 1.




Too many possibilities! But, information theory’s “unbiased
inference” (Jaynes, 1957) says we should

85 = — Z ¢i(r;) log [pi(r;)] -




The resulting SFs are very wide. Hence, Arroyo and Ortiz
(2006) added an to make SF's more local:
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The resulting SFs are very wide. Hence, Arroyo and Ortiz
(2006) added an to make SF's more local:

Ej =8 di(ry)r.
i
If we forget constraints, the extreme of F' = E — T'S gives

¢i(r;) = exp(—Pry).

More than enough to drive me(*) nuts at the time (from that
time, to be precise.)



A continuum theory already exists[1], so we may inspire
ourselves.
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A continuum theory already exists[1], so we may inspire
ourselves.

_§= 02/ Zgbz llog (5(r)65(r)) — 1] dr-
Any integral may be approximated as
. m;
/f(r)dr = Z %f(rj).
I
Therefore,
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The energy term is
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The energy term is
E:ﬁ/ Zd)l )| — 74| 2dr
For a Gaussian kernel, ﬁri?j o —log Wj;, so for any kernel
E= ¢ Z m; Z ¢i(r;) log (m;Wi;) .
j i

Also, a CO constraint,

LCO = ijaj <Z qﬁi(rj) — 1)



Before including the pressure: extremezing F' = E — S with
respect to ¢;(r;) and ay,



Before including the pressure: extremezing F' = E — S with
respect to ¢;(r;) and ay,

But, pressure is not included, and we do not want anything
happening yet! This the density:

pi=m;y_ Wi
o



Finally, there will be a pressure term
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Since the volumes explicitely depend on the pressures,
Vi=>] ; %j(bi(Tj), we may look for the pressure field that fixes
their values, through a Newton-Raphson method:
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Since the volumes explicitely depend on the pressures,
Vi=>] ; %j(bi(Tj), we may look for the pressure field that fixes
their values, through a Newton-Raphson method:

AN . )
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J

this is a to solve for the pressures.
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LCl = ij)\j . (Z ¢i(7'j)ri — ’I‘j)
J i

SFs are now C1 consistent, there is a new force term, but most
importantly, perhaps ...



The SFs have a sort of boundary detection, and have a
“weak-Kronecker condition”.

—0.45—0.40-0.35—-0.30—0.25




Thanks for your attention.

[1] Daniel Duque, A unified derivation of Voronoi, power, and
finite-element Lagrangian computational fluid dynamics,
European Journal of Mechanics - B/Fluids 98, 268-278 (2023)



Consider the smoothing
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Consider the smoothing
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Then CO, ), ¢;(r;) = 1, means constant fields have proper
constant smoothing.



Consider the smoothing
fry) =Y ¢i(rj)fi

Then CO, ), ¢;(r;) = 1, means constant fields have proper
constant smoothing.

While C1, ), ¢;(r;)r; = r; means linear fields have proper
linear smoothing.
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