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Particle i influences particle j through a shape function (SF),
“ϕi(rj)”.
Subject to constraints, such as

∑
i ϕi(rj) = 1.



Information entropy

Too many possibilities! But, information theory’s “unbiased
inference” (Jaynes, 1957) says we should maximize

Sj = −
∑
i

ϕi(rj) log [ϕi(rj)] .



SPH?

The resulting SFs are very wide. Hence, Arroyo and Ortiz
(2006) added an energy to make SFs more local:

Ej = β
∑
i

ϕi(rj)r
2
ij .

If we forget constraints, the extreme of F = E − TS gives

ϕi(rj) = exp(−βr2ij).

More than enough to drive me(*) nuts at the time (from that
time, to be precise.)
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Building a theory: ideal part

A continuum theory already exists[1], so we may inspire
ourselves.

−S = c2
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Building a theory: energy part, constraint

The energy term is

E = β

∫
ρ(r)

∑
i

ϕi(r)|r − ri|2dr

For a Gaussian kernel, βr2ij ∝ − logWij , so for any kernel

E
.
= −c2

∑
j

mj

∑
i

ϕi(rj) log (mjWij) .

Also, a C0 constraint,

LC0 =
∑
j

mjαj

(∑
i

ϕi(rj)− 1

)



Building a theory: energy part, constraint

The energy term is

E = β

∫
ρ(r)

∑
i

ϕi(r)|r − ri|2dr

For a Gaussian kernel, βr2ij ∝ − logWij , so for any kernel

E
.
= −c2

∑
j

mj

∑
i

ϕi(rj) log (mjWij) .

Also, a C0 constraint,

LC0 =
∑
j

mjαj

(∑
i

ϕi(rj)− 1

)



Building a theory: energy part, constraint

The energy term is

E = β

∫
ρ(r)

∑
i

ϕi(r)|r − ri|2dr

For a Gaussian kernel, βr2ij ∝ − logWij , so for any kernel

E
.
= −c2

∑
j

mj

∑
i

ϕi(rj) log (mjWij) .

Also, a C0 constraint,

LC0 =
∑
j

mjαj

(∑
i

ϕi(rj)− 1

)



Density, revealed

Before including the pressure: extremezing F = E − S with
respect to ϕi(rj) and αj ,

F ′′ = −c2
∑
j

mj

[
log

(
mjZj

ρj

)
+ 1

]

Zi :=
∑
j

Wij

But, pressure is not included, and we do not want anything
happening yet! This fixes the density:

ρj := mj

∑
i

Wij



Density, revealed

Before including the pressure: extremezing F = E − S with
respect to ϕi(rj) and αj ,

F ′′ = −c2
∑
j

mj

[
log

(
mjZj

ρj

)
+ 1

]

Zi :=
∑
j

Wij

But, pressure is not included, and we do not want anything
happening yet! This fixes the density:

ρj := mj

∑
i

Wij



Building a theory: pressure

Finally, there will be a pressure term
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The C0 model: pressure closure

Since the volumes explicitely depend on the pressures,
Vi =

∑
j
mj

ρj
ϕi(rj), we may look for the pressure field that fixes

their values, through a Newton-Raphson method:

∑
j

(
∂Vi

∂pj

)(n) [
p
(n+1)
j − p

(n)
j

]
= −

(
Vi − V 0

i

)(n)
,

this is a Poisson equation to solve for the pressures.
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TG vortex sheet



TG vortex sheet, SPH



Future: C1 shape functions

LC1 =
∑
j

mjλj ·

(∑
i

ϕi(rj)ri − rj

)

SFs are now C1 consistent, there is a new force term, but most
importantly, perhaps . . .
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C1 shape functions
The SFs have a sort of boundary detection, and have a
“weak-Kronecker condition”.



Thanks, and Ref.

Thanks for your attention.

[1] Daniel Duque, A unified derivation of Voronoi, power, and
finite-element Lagrangian computational fluid dynamics,
European Journal of Mechanics - B/Fluids 98, 268-278 (2023)



Extra: SFs as interpolants

Consider the smoothing

f̄(rj) =
∑
i

ϕi(rj)fi

Then C0,
∑

i ϕi(rj) = 1, means constant fields have proper
constant smoothing.
While C1,

∑
i ϕi(rj)ri = rj means linear fields have proper

linear smoothing.
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