3rd Iberian Congress – Advances on SPH

23 - 24 January 2024, Ourense, Galicia, Spain

Validation of DualSPHysics for Fluid-Structure interaction of waves and flexible floating structures

Francisco Bernardo¹, Moisés Brito¹, Rui M.L. Ferreira², João Leal³, Alejandro C. Crespo⁴, Jose M. Domínguez⁴,

- 1. UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Portugal
 - 2. CERIS, Instituto Superior Técnico, Portugal
 - 3. Faculty of Engineering and Science, University of Agder, Norway
 - 4. EPHYSLAB, Environmental Physics Laboratory, CIM-UVIGO, Universidade de Vigo, Spain

Ourense, 23rd January 2024

Summary

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Experimental Methodology
- 5. Results

Ν

6. Future Objectives

Offshore Floating Photovoltaic Systems

Example of a planned Floating PV system. (Marine Energy, March 20, 2020. Retrieved from: www.offshore-energy.biz/saipem-and-equinor-eye-offshorefloating-solar/)

Floating PV system sharing infrastructure with offshore wind turbine. (Bernadette Geyer, June 26, 2023. Retrieved from: www.pv-magazine.com/2023/06/26/offshore-floating-vs-land-based-pv-systems/)

Lack of a fully coupled Fluid-Structure Interaction code for flexible structures

Advances in DualSPHysics Code allowing flexible structures

Validate Dualshpysics for FSI with flexible structures

Use data from literature or well known case studies

Create our own experimental data

Use data from literature or well known case studies

Three cases studied in DualSPHysics. (DualSPHysics youtube channel, October 16, 2022. Retrieved from: https://www.youtube.com/@DualSPHysics)

Create our own experimental data

Wave Flume at DECivil, Instituto Superior Técnico, Lisbon, Portugal

Sloshing tank at CEHINAV, Universidade Politécnica de Madrid, Madrid, Spain

Background

Why the Sloshing tank ?

Disadvantages

- Not real oceanlike waves
- Sidewalls

Positive aspects

- Small size
 - Less particles in SPH
 - Better Experimental data

8

Background

Why the Sloshing tank ?

1

0

1. Accurate pressure measurements

Navier Stokes Equations

 $\rho \frac{D\vec{u}}{Dt} = -\nabla p + \mu \nabla^2 \vec{u} + \rho \vec{F}$

 $\nabla \cdot \vec{u} = 0$ \longrightarrow Conservation of Mass

2. Particle Image Velocimetry - PIV

3. Equal sloshing between Experimental and Numerical cases

Ν

EPDM Rubber foam sheet

N

Validation

Ν

1. WITHOUT FLOATING BODY

1. Pressure on tank walls

2. PIV

Validation

Ν

1. WITH FLOATING BODY

1. Pressure on tank walls

2. PIV

2. Body deformation

1

9

Validation

Rotary encoder with precision of 1000 points/rotation With gears to increase precision to 31250 points/rotation or 87 points/degree

Ν

N

2

1

3 degree of rotation at 0.375hz

Particle Image Velocimetry

Particle Image Velocimetry

2

6

Nova school of Science & Technology 3rd Iberian Congress – Advances on SPH, 23 – 24 January 2024, Ourense, Galicia, Spain

DualSPHysics does not yet contemplate collisions between type 'moving' objects

Future

1. A lot of lab work, both numerical and experimental

1. Publish Data Set Paper

2. Publish DualSPHysics FlexStruct validation paper

2. Long term possibility: validation on wave flume

3rd Iberian Congress – Advances on SPH

23 - 24 January 2024, Ourense, Galicia, Spain

Validation of DualSPHysics for Fluid-Structure interaction of waves and flexible floating structures

Francisco Bernardo¹, Moisés Brito¹, Rui M.L. Ferreira², João Leal³, Alejandro C. Crespo⁴, Jose M. Domínguez⁴,

- 1. UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Portugal
 - 2. CERIS, Instituto Superior Técnico, Portugal
 - 3. Faculty of Engineering and Science, University of Agder, Norway
 - 4. EPHYSLAB, Environmental Physics Laboratory, CIM-UVIGO, Universidade de Vigo, Spain

Ourense, 23rd January 2024

