

This presentation resumes the work of many researchers and institutions in developing and applying DualSPHysics for renewable energy simulations.

RESEARCHERS

SALVATORE CAPASSO GIACOMO VICCIONE

BONAVENTURA TAGLIAFIERRO CORRADO ALTOMARE

IVÁN MARTÍNEZ-ESTÉVEZ JOSÉ DOMÍNGUEZ ALEX CRESPO MONCHO GÓMEZ-GESTEIRA

INTRODUCTION TOPIC **CHALLENGES STRATEGY**

REVIEW OF APPLICATIONS WAVE ENERGY WIND ENERGY **HYBRID PLATFORMS**

METHODS FRAMEWORK CAPABILITIES WAVE FLUMES PROJECT CHRONO MOORDYN+

TOPIC CHALLENGES STRATEGY

computation

TOPIC Offshore renewable energy (ORE) and numerical modeling

Multi-body systems Non-linear responses

PTO optimization Power output estimation

Performance evaluation in operational conditions, design guidelines compliance

potential flow engineering tools

STRATEGY Include CFD in the design process?

State of the art of CFD models:

- Rapidly increasing computational power
- Reliable models
- Really cost-effective

COMPREHENSIVE AND EFFICIENT DESIGN

FORESEE WIDER APPLICATIONS FOR HIGH-FIDELITY CODES:

"COMPLEX" nonlinear structure response nonlinear hydrodynamic second order effects

SURVIVABILITY

Harsh sea states, tsunami waves...

but also

"EXTREME

OPERATIONAL CONDITIONS

Wave-current combinations, irregular wave trains

EPhysLab

<section-header>

FRAMEWORK CAPABILITIES complexity —> tools

WIND ACTION COLUMN DYNAMICS

PTO MECHANICS

ANCHORING LOADS

BUOY'S HYDRODYNAMICS

PLATFORM HYDRODYNAMICS

WAVES AND CURRENT ACTION

3rd IBERIAN SPH - OURENSE 2024

WAVE FLUMES

SPH guarantees the flexibility for supporting wave-structure interaction including wave-breaking and extreme deformations

Waves and current generation

Open Boundaries + Absorption Zone

Z

Y 👗

Vel Magnitude 3.6e+00 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8e+00

Time = $45 40 \, \text{s}$

Imposing inlet condition according to the calculated flow velocity field

Focused or irregular waves generation **Piston-type wavemaker**

NewWave theory implemented in version 5.2

PROJECT CHRONO

Open source multiphysics library

multi-body support smooth and non-smooth contacts kinematic and dynamic restrictions

Martínez-Estévez et al., 2023, CPC

Based upon the original implementation "Moordyn"

This lumped mass mooring line model is able to account for:

- account for axial stiffness
- damping
- weight and buoyancy forces
- vertical spring-damper forces due to the friction with the seabed

- solve interconnected floating bodies
- to assign different depths for catenary-like connections.

Floating moored BOX Regular waves; H=0.12 m, T=1.6s, d=0.5m

cpu DualSPHysics

Time: 0.02 s

REVERPPERIORS WAVE ENERGY WIND ENERGY **HYBRID PLATFORMS**

WAVE ENERGY

Time: 0.00 s

OWSC

Brito et al., 2020, Renewable Energy

Time: 0.00 s

REVIEW OF APPLICATIONS

WAVE ENERGY **Uppsala University WEC (UUWEC)**

Taut-moored point-absorber equipped with a linear magnetic generator experimental data available for embedded focused waves

REVIEW OF APPLICATIONS

"COMPLEX"

UPPSALA UNIVERSITET

SURVIVABILITY

Response under focused waves

Tagliafierro et al.,

2022, **APEN**

OPERATIONAL CONDITIONS

Response in waves and current fields

Capasso et al., 2024,

OMAE (u.r.)

WAVE ENERGY **UUWEC:** focused wave validation

REVIEW OF APPLICATIONS

WAVE ENERGY UUWEC: Waves and current effects

OPERATIONAL CONDITIONS

Modifying the wave field: different wavelength, hence steepness and mean energy flux

Changing the hydrodynamic behavior of a floating body: shifted equilibrium position

WAVE ENERGY UUWEC: Numerical Setup

OPERATIONAL CONDITIONS

Open boundaries domain to investigate the current influence, using the same WEC design previously validated:

λ

same wave conditions and different current velocities

λ

WAVE ENERGY UUWEC: Power output

P power output of the device P available wave power $CW = \overline{P}/P$ capture width

Normalised with respect to the quantities in absence of current

REVIEW OF APPLICATIONS

WAVE ENERGY UUWEC: Power output

 \overline{P} power output of the device *P* available wave power $CW = \overline{P}/P$ capture width

REVIEW OF APPLICATIONS

NONLINEAR RESPONSE MORE AVAILABLE POWER \neq **MORE POWER PRODUCED**

Reconsider the validity of power matrix when evaluating the power output of the device in presence of current

WIND ENERGY

which it is a mature framework.

Wind Turbines (FOWTs)

Tagliafierro, B., Karimirad, M., Altomare, C., Göteman, M., Martínez-Estévez, I., Capasso, S., Domínguez, J. M., Viccione, G., Gómez-Gesteira, M., & Crespo, A. J. C. (2023). Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework. Applied Ocean Research, 141, 103757. https://doi.org/10.1016/j.apor.2023.103757

Only recently DualSPHysics has been applied to FOWTs simulations, differently from WECs, for

Here we show the hydrodynamic validation of a semi-submersible platform for Floating Offshore

WIND ENERGY DeepCWind: OC6 Project

Phase I of the OC6 project is focused on examining **why** offshore wind design tools underpredict the response (loads/motion) of the OC5-DeepCwind semisubmersible at its surge and pitch natural frequencies.

PHASE 1A

Hydrodynamic loads validation

Fixed simplified structure without central tower

PHASE 1B

free-decay motion validation

Realistic configuration of the platform allowing 1 DOF at time

WIND ENERGY DeepCWind: OC6 Phase 1A

Regular waves

REVIEW OF APPLICATIONS

Bichromatic waves

WIND ENERGY DeepCWind: OC6 Phase 1B

SURGE

HYBRID PLATFORMS

A promising approach for harnessing multiple forms of ocean renewable energy involves integrating a hybrid system that combines a FOWT with WECs (similar to Wave-Star)

- 1. Revolute joint
- 2. Dampers (energy harvesting)
- 3. Imposed thrust and torque

1. Revolute joints

2. Dampers (energy harvesting)

FOWT and WECs under regular waves - using Chrono 8.0

-

FONGLISIONS

CFD can help unveil nonlinear effects, not only with extreme waves, but whenever the combination of flow field and system characteristics requires high-fidelity modeling

Dualsphysics is a reliable engineering tool in this sense, relying on a robust SPH core solver and external libraries to represent key features of ORE devices

It is able to simulate highly dynamics devices (WECs) and very stable platforms (FOWts) (also simultaneously!)

SPH remains a top-tier method for focused waves, wave breaking, overtopping

Wave-current interaction poses unexpected challenges in performance evaluation of WECs

Computational effort becoming a secondary issue

SCAPASSO@UNISA.IT

3RD IBERIAN SPH - OURENSE 2024

